

Engineering, Operations & Technology Boeing Research & Technology

Recearch & Technology

Leveraging Shared IT Networks for Control Systems

Steven C. Venema, PhD The Boeing Company Steven.C.Venema@Boeing.com Eric Byres, P.Eng. Tofino Security, Inc. Eric@ByresSecurity.com

ICSJWG – 07Apr2010

- A Framework for Describing the Problem
- A Proposed Technology Solution
- Key Technologies and Standards
- Implementation Experience
- Discussion and Future Directions

PROBLEM FRAMEWORK Peaceful Coexistence with IT?

Engineering, Operations & Technology | Boeing Research & Technology

PROBLEM FRAMEWORK Peaceful Coexistence with IT?

Engineering, Operations & Technology | Boeing Research & Technology

PROBLEM FRAMEWORK Typical IT ICS Isolation Scheme

Engineering, Operations & Technology | Boeing Research & Technology

PROBLEM FRAMEWORK

Engineering, Operations & Technology | Boeing Research & Technology

PROPOSED TECHNOLOGY SOLUTION Protected ICS using Untrusted IT Network

Engineering, Operations & Technology | Boeing Research & Technology

PROPOSED TECHNOLOGY SOLUTION Generalized Secure Backhaul for ICS

Engineering, Operations & Technology | Boeing Research & Technology

A: There are multiple implementation approaches:

- 1. It could be provided by the backhaul "ISP"
- 2. It could be placed in a separate box in front of a cluster of ICS devices
- 3. It could be incorporated right into the control system devices
- 4. It could be any combination of the above

A: Automate as much as possible:

- Certificate provisioning and lifecycle management
- Endbox configuration management
- Connectivity policy definition and enforcement
- Monitoring and fault diagnosis
- A: Use public standards wherever possible
 - IT standard services
 - Key protocols and interfaces for interoperability

PROPOSED TECHNOLOGY SOLUTION High-level Architecture Goals

Engineering, Operations & Technology | Boeing Research & Technology

- 1. Allow control systems to utilize a common shared network infrastructure to minimize deployment costs
 - Both wired and wireless
 - Support hybrid approaches (shared + isolated networking infrastructure) where appropriate
- 2. Isolate control systems from the shared network to protect "primitive" control devices
 - "Bake in" cryptographic identities and authentication
- 3. Allow controls engineers (not IT) to manage their own devices
 - Create a clear delineation between the roles and responsibilities of controls engineers and IT services
- 4. Keep CapEx/OpEx costs low and reliability high

Key Technologies & Standards Virtual Private LAN Service (VPLS)

Engineering, Operations & Technology | Boeing Research & Technology

Key Technologies & Standards Host Identity Protocol (HIP)

Engineering, Operations & Technology | Boeing Research & Technology

- Devices communicate over end-toend encrypted HIP tunnels
- Basic HIP Features:
 - Requires no changes to layer 2/3 network infrastructure
 - Like IPSec, but tunnels are bound to cryptographic identities, not IP addresses
 - Creates a arbitrary "overlay networks" without having to mess with VLAN's
 - Secure over untrusted network infrastructures
- See IETF RFC's 5201-5207

Key Technologies & Standards Interface for Metadata Access Points (IF-MAP)

Engineering, Operations & Technology | Boeing Research & Technology

E&IT | Networked Systems Technology

Relational Database

Contraction Image: Contraction of the characterization of the chara

Needed data properties

- Lots of real-time data writes
- Unstructured relationships
- Diverse interest in changes to the current state as they occur

Distributed data producers & consumers

For more information, see the Trusted Computing Group website:

http://www.trustedcomputinggroup.org

Key Technologies & Standards Public Key Infrastructure (PKI)

Engineering, Operations & Technology | Boeing Research & Technology

- E&IT | Networked Systems Technology
- Full lifecycle management for cryptographic identities must be
 - Secure
 - Scalable
 - Robust

- Embedded systems are particularly sensitive to this issue (E.g., certificate expiry or revocation)
 - (Re)Bootstrap problem: How do you securely provision & manage a distant embedded system if it doesn't already have a cryptographic credential to identify itself for secure communications?
- We are working on automating much of the identity lifecycle management process using coordination through IF-MAP

Key Technologies & Standards ISA100.15 Working Group

Engineering, Operations & Technology | Boeing Research & Technology

- Creating a standard for "Secure Backhaul"
 - Commodity Commercial Communications Provider (CCCP)
 - User Owned Communications (UOC) infrastructure
- Focus on standardizing functional requirements and interface specifications
 - Leveraging existing standards wherever possible
 - Interoperability and compatibility are particularly important

IMPLEMENTATION EXPERIENCE First Implementation at Boeing

Engineering, Operations & Technology | Boeing Research & Technology

- Using 777 F/A as a pilot program
 - 9 "Crawlers", F/A tug, Integrated Control System (ICS)
 - In production use for more than 2 years
 - Formed baseline for standards & commercialization efforts

Tofino "Endbox" LSM

One Possible Commercial Implementation

Eric Byres, P.Eng April 2010

The Vision

- Standards-based solution for general management of secure control system networks within the constraints of IT infrastructures
- Solution must work with existing legacy devices as well as future standards and products
- Must separate IT and controls group roles and responsibilities

A Standards Based Solution

- Solution based on open source software and public standards:
 - IPv4/IPV6, TPC/UDP
 - ITEF Host Identity Protocol (HIP)
 - TCG Meta-Data Access Protocol (MAP)

ig the

ICS This is NOT a proprietary solution interaction
Collaboration between Byres Security and Boeing to

incorporate open source software created by Boeing to into BSI commercially supported platform

Co

Incorporation into Tofino™ Architecture

Created a HIP Loadable Security Module (LSM)

Byres Security Inc.

Endbox Configuration and Provisioning

- Endboxes can connect to standard IT networks
 - Uses internal certificate for network authentication as required
- Certificate and overlay configuration managed through a centralized secured web interface
 - Configuration and provisioning metadata stored in MAP
 - Access control for web interface will depend on each company's policies for IT and Controls teams roles.
- Endbox devices ship with factory certificates and settings that facilitate automated configuration and provisioning bootstrap process.

TOFINO

Simple Overlay Management for Controls

 Additional existing Tofino capabilities such as firewall and deep packet inspection can be configured through the BSI's CMP tool.

		Network Editor 🛛 🙆 *Vancouver Wheat #	Pool Tofino 🛛 🛄 *V	WP_PLC_0001 🛛	
General / Communications Firewall Modbus TCP Enforcer					
		Talker	Function Code Rule	Host Type Unit ID	Sanity Check
		🖻 🔜 PLC Programming Station	CONDITIONAL	Master	✓ On
		40 Program (ConCept)	ALLOW		
		42 Concept Symbol Table	ALLOW		
Network Editor	💹 VWP_PLC_0001 🛛	126 Schneider Electric - Program	ALLOW		
		🖹 🔜 Supervisor Remote Laptop	CONDITIONAL	Master	🖌 On 📗
General / Communications Firewall Modbus TCP Enforcer		🖳 🖓 🖓 🖓 🖓	ALLOW		
The firewall status on the parent Tofino is: PREDEPLOYED		Minimum Coil Address	0		
Attvibutor	L Bule	Maximum Coil Address	1024		
Attributes	! Rule	2 Read Discrete Inputs	ALLOW		
		Minimum Input Address	0		
	0	Maximum Input Address	1024		
E PLC Programming Station		i 🖓 3 Read Holding Registers	ALLOW		
Tw MODBUS - TCP		Minimum Register Address	0		
Supervisor Remote Laptop		Maximum Register Address	2000		
X₩ MODBUS - TCP	M A Dbi	<			>
		* Click on a cell to change its value			
		Administer Tofino		ОК	Apply Close
Add Talker Add Protocol Add Special Rule Edit Talker Rule Edit Protocol Rule Delete					
Administer Tofino	ОК	Apply Close			

Byres Security Inc.

Next Steps

- Continued interaction with ISA100 to develop a standardized set of interfaces for this capability
- Continued interaction with the Trusted Computing Group to standardize the ICS use case (provisioning & configuration management)
- Complete productizing and QA testing if sufficient demand is identified in the market space
- Industry awareness

TOFINO[®]

Future Research

- Short Term
 - Fully automated certificate provisioning
 - Standard MAP authentication system
 - HIP for PCs

- Longer Term
 - Functionality embedded directly into future ICS products
 - No Endbox needed in those cases
 - Completion of ISA100 standardization activities for this functional architecture and implementation interfaces to facilitate interoperability

Summary

- We've created an architecture that...
 - Is viable, scalable, and addresses the needs of current and future control system deployments
 - Leverages existing and emerging standards as much as possible
 - Is implementable and already has proven operational experience
- Our implementation experience exposed some gaps in existing standards that need work:
 - Certificate provision process for embedded systems
 - Handling of non-IP protocols in routed networks

Questions?

© Byres Security Inc.